If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+28x+2=0
a = 8; b = 28; c = +2;
Δ = b2-4ac
Δ = 282-4·8·2
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-12\sqrt{5}}{2*8}=\frac{-28-12\sqrt{5}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+12\sqrt{5}}{2*8}=\frac{-28+12\sqrt{5}}{16} $
| 2/1/3x=14 | | (2x/x+1)+(5/2x)=2 | | 2(3x2+4)=19x | | (3x+10)2x=360 | | x^2+11x-4000=0 | | 3z/10+5=-5 | | X÷5+x-27+15=180 | | 7+6y=9 | | z/8+2=8 | | y/11=11 | | R^2+10t+9=0 | | 2x+3=3×-4 | | 2(55)+8x=9(x+55) | | 2m2-3m+1=0 | | 3x=4/3x-10/3 | | (3x+1)+(x+2)2=65 | | 8n+15=3n+35 | | x/F=10 | | 7(3s+8)=140 | | a^2+12a^2+15a=0 | | 11=4n-5 | | Y+5/9=2y+2/9 | | 0.80x+0.45(80)=0.40(140) | | 0.60x+0.05(150)=0.30(69) | | 10y+15-y=150-11y-27 | | -32(5^(3x))=12-5(5^(6x)) | | 2x-1=14+x | | 1.035=1+0.25x | | X*2-6x+15=0 | | 7x-3/2+5x+3/9=11 | | 7/x-1=14/x+1 | | x+5/3x-1=3 |